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DEVELOPMENT OF SINGLE‐SEED NEAR‐INFRARED SPECTROSCOPIC

PREDICTIONS OF CORN AND SOYBEAN CONSTITUENTS USING

BULK REFERENCE VALUES AND MEAN SPECTRA

P. R. Armstrong,  J. G. Tallada,  C. Hurburgh,  D. F. Hildebrand,  J. E. Specht

ABSTRACT. Rapid, non‐destructive single‐seed compositional analyses are useful for many areas of crop science, including
breeding and genetics. Seeds are sometimes unique and require preservation due to small samples, which necessitates
development of methods for total non‐destructive measurement. Near‐infrared reflectance spectroscopy (NIRS) can be used
for non‐destructive single‐seed composition prediction, but the reference methods used to develop prediction models are
usually destructive. Reference methods are costly, and extensive sets of seeds must be used to obtain prediction models for
multiple constituents. In this research, single‐seed NIRS prediction models were developed for common constituents of
soybeans and corn using composition values from bulk reference measurement and respective averaged single‐seed spectra
as opposed to single‐seed reference and spectra. The bulk reference model and a true single‐seed model for soybean protein
were also compared to determine how well the bulk model performs in predicting single‐seed protein. This provided a basis
for evaluating bulk model performance for other constituents. Bulk model statistics indicated that bulk models should perform
well for soybean protein and oil, but not well for fiber; corn bulk models should perform well for protein, oil, starch, and seed
density. Bulk model predictions of single‐seed soybean reference protein show, at best, that bulk models work reasonably well,
with a standard error of prediction (SEP) = 1.82%) compared to an SEP of 0.97% for a true single‐seed protein model. Bias
correction may be needed, though, depending how the bulk model is developed. Overall, the bulk models should be useful
for selecting single seeds in breeding programs targeting specific composition traits and segregating individual samples based
on composition.
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hole‐grain near‐infrared spectroscopy has
been successfully used in routine analysis of
seed chemical composition of corn and soy‐
beans using both near‐infrared reflectance

spectroscopy (NIRS) and near‐infrared transmittance spec‐
troscopy (NITS) methods (Rippke et al., 1995; Hardy et al.,
1995). The instrumental methods are useful because they are
non‐destructive,  fast, accurate, and repeatable. In addition,
these methods require little to no sample preparation and si‐
multaneously estimate constituent values such as moisture,
protein, oil, starch, and fiber contents from a single measure‐
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ment. However, in plant breeding or genetic applications,
bulk analysis procedures cannot recognize individual seeds
that contain special constituent levels that deviate from nor‐
mal values (Baye et al., 2006). The ability to select these
types of seeds allows further assessment and potential ad‐
vancement to successive stages of breeding work.

Single‐seed spectroscopy has been advanced to hasten va‐
rietal development by identifying seeds that possess specific
quality traits in a segregating population. Substantial work
has been done for wheat, corn, soybeans, and other seeds.
Delwiche and Massie (1996) achieved good distinction be‐
tween red and white classes of wheat using multiple linear re‐
gression and partial least‐squares models from two spectral
regions. In other work by Delwiche (1998), prediction mod‐
els for single‐seed protein contents of several classes of
wheat attained standard errors of prediction (SEP) ranging
from 0.462% to 0.720% and were obtained in models using
the spectral range from 1100 to 1400 nm. Dowell et al. (2006)
used NIRS to sort wheat seeds by protein content and hard‐
ness, and proso millet into amylose‐bearing and amylose‐
free fractions.

Velasco et al. (1999) studied oil and fatty acid composition
of rapeseed and found reasonably good correlation between
NIRS of single seeds and reference measurements for oleic,
erucic, linoleic, and linolenic constituents. Abe et al. (1996)
reported SEP values ranging from 0.68% to 1.74% for soy‐
bean and wheat protein, respectively, using multiple linear
regression models. To support their research on quantitative
trait loci analysis for recombinant soybean inbred lines, Ta‐
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juddin et al. (2002) developed single‐seed soybean calibra‐
tion models for prediction of protein and lipid contents by
NITS in the range of 700 to 1100 nm. F8 and F9 generation
seed samples were divided into two size groups (<6 mm and
>6 mm seed diameter). The researchers obtained standard er‐
rors for predicting protein contents of 1.32% and 1.57% and
correlation coefficients of 0.88 and 0.87 for the large and
small seed classes, respectively, using four‐term linear re‐
gression models. Baye et al. (2006) developed calibration
models to predict seed composition of normal and mutant
seeds from eight inbred lines of corn using reflectance and
transmittance  spectroscopy. They found that better predic‐
tive models were obtained from the absolute contents data
than from the relative content data. Cogdill et al. (2004) con‐
cluded that moisture content was easier to predict than oil
content in single‐seed transmittance hyperspectral imaging
for corn. Armstrong (2006) developed a single‐seed NIR
sorting instrument and showed its usefulness for prediction
of moisture in corn and soybeans and protein content in soy‐
beans. Standard error of cross‐validation of models for pro‐
tein content in three varieties of soybeans ranged from 0.79%
to 1.46%, with a corresponding range of coefficients of deter‐
mination of 0.83 to 0.96. The instrument was designed to han‐
dle large seeds at substantially higher measurement rates than
what has previously been developed. Janni et al. (2008) also
developed an NIRS system with good predictions for corn oil
content. Spectra were collected on air‐tumbled seeds in this
system using a 12 s scan time.

NIRS typically uses single‐seed constituent measure‐
ments coupled with single‐seed spectra for prediction model
development. Unfortunately, many reference measurements
of constituents are difficult, expensive, or imprecise for
single seeds. An alternative approach uses bulk reference
measurements matched to the mean spectra of a sample ob‐
tained from averaging single‐seed spectra. This method was
proposed by Shadow and Carrasco (2000) and is implied indi‐
rectly by Delwiche and Hruschka (2000). The method was
also used successfully by Dowell et al. (2006) for wheat and
millet. Benefits of this approach are that prediction models
are quicker to develop, less costly, suitable for small breeder
samples that must be retained for planting, and self‐
prediction models can be developed.

The focus of this research is to examine the single‐seed
prediction accuracy of NIRS models developed from bulk
reference analysis. This work is important for the develop‐
ment of NIRS prediction of small sample lines, sometimes
consisting of less than a hundred seeds. This is particularly
important for soybean protein and oil measurement and the
subsequent selection of seeds from genetic lines produced at
the University of Kentucky. This work is focused on increas‐
ing both protein and oil levels in soybeans. Corn samples are
included in this study, as results should be applicable to these
seed types. This work also addresses use of a single‐seed
NIRS system that can collect spectra on single seeds at a high
rate, which would facilitate quick development of bulk mod‐
els at a lower cost. Previous research has used NIRS systems
that could only measure seeds at rates of a few per minute, as
opposed to seconds.

OBJECTIVES

This work is intended to provide a better understanding of
NIRS model accuracies attainable when using mean sample
spectra derived from single seeds and bulk sample reference

values in lieu of single‐seed spectra and reference values. Ob‐
jectives of this study were to develop and examine the predic‐
tion accuracies for common constituents of corn and
soybeans using bulk models to predict single‐seed constitu‐
ents. A secondary objective was to determine an effective
number of seeds that were adequate for deriving the mean
sample spectra used in bulk model development.

MATERIALS AND METHODS
CORN AND SOYBEAN SAMPLES

Forty hybrids of commercial yellow corn and 40 varieties
of soybeans were provided by Iowa State University. Bulk
analysis values were provided for protein, oil, and starch for
corn, and for protein, oil, and fiber for soybeans. Twenty‐one
soybean samples with bulk reference analysis for protein and
oil were also provided by the University of Kentucky. Sam‐
ples are summarized in table 1. Reference measurements for
35 of the Iowa samples were obtained using the following
standards: AOAC 990.03 (protein) and 920.39 (oil), Corn Re‐
finers Association A‐20, (starch), and AOCS Ba 6‐84 (fiber).
Five samples were measured using a grain analyzer (Infratec
1241, Foss, Eden Prairie Minn.), calibrated and maintained
by Iowa State University. The SEP values for their calibra‐
tions were 0.53%, 0.32%, 0.74%, and 0.02 for corn protein,
oil, starch, and density, respectively, and 0.55%, 0.35%, and
0.08% for soybean protein, oil, and fiber, respectively. Seed
density was measured using a pycnometer (AccuPyc 1330,
Micromeritics Instrument Corp., Norcross, Ga.).

Kentucky samples were measured using an NIR analysis
system (DA7200, Perten Instruments, Springfield, Ill.),
maintained by the University of Kentucky. Twelve of the
samples were obtained from the Soybean Quality Traits pro‐
gram administered by the American Oil Chemists Society
and the United Soybean Board. Four samples were obtained
from the Department of Agronomy and Horticulture at the
University of Nebraska due to their high protein content. Four
samples were obtained from the USDA‐ARS (Raleigh, North
Carolina), representing two high and two low oil samples.
One sample represents a control commonly used to evaluate
other soybean lines by the University of Kentucky. The SEP
values for the DA7200 calibrations were 0.32% and 0.38%
for soybean protein and oil, respectively. The DA7200 mea‐
surements for 14 samples were cross‐checked with analytical
methods, and the difference between measurements was

Table 1. Statistical profile of the sample sets.
Sample Mean SD Range N

Kentucky soybeans[a]

Protein (%) 42.32 5.42 35.40‐53.80 21
Oil (%) 20.94 2.70 15.50‐26.10 21

Iowa soybeans[a]

Protein (%) 42.66 2.99 37.06‐52.23 40
Oil (%) 21.31 1.25 17.33‐23.10 40
Fiber (%) 5.26 0.30 4.17‐5.77 40

Iowa corn[b]

Protein (%) 8.04 1.75 5.47‐13.00 40
Oil (%) 4.36 1.43 2.80‐8.37 40
Starch (%) 59.55 2.24 54.15‐62.63 35
Seed density (g cm‐3) 1.27 0.04 1.20‐1.34 35

[a] Protein and oil 0% moisture basis.
[b] Protein, oil, and starch are reported on a 15% moisture basis.



1531Vol. 54(4): 1529-1535

found to be at most 0.51% for protein and 0.36% for oil. All
samples were selected, as much as possible, to have a broad
range of constituent values that were evenly distributed
across their constituent ranges.

SINGLE‐SEED NIR INSTRUMENT

The NIRS instrument used for single‐seed spectra collec‐
tion was principally designed to rapidly measure and sort
corn and soybean seeds by composition, such as protein and
oil content. Measurement rates are three seeds per second.
The instrument's main components are an NIR spectrometer,
fiberoptic bundle, light tube assembly, control circuit, and
computer. The spectrometer (model NIR256‐1.7T1, Control
Development,  Inc., South Bend, Ind.) has a thermoelectrical‐
ly cooled InGaAs diode array with a spectral range of 904 to
1685 nm. The light tube assembly has 48 miniature tungsten
light bulbs (part 1150, 5 V, 0.115 A, Gilway Technical Lamp,
Woburn, Mass.) arranged equidistantly in six rows along the
tube periphery. The lights are housed in an aluminum tube.
A glass borosilicate tube, 12 mm internal diameter, runs
through the center and length of the aluminum tube. A spec‐
trum of a seed was taken as it slid down the glass tube. The
conceptual drawing of the light tube is shown in figure 1. A
2 m long, bifurcated optical fiber assembly with a 600 �m
core diameter (Ocean Optics, Dunedin, Fla.) is attached at
both ends of the light tube and connected to the spectrometer.

The photo‐detector (model D12DAB6FP, Banner Engi‐
neering Corp., Minneapolis, Minn.) was used to detect the
seed and trigger the spectrometer. The integration time for
the spectrometer was set at 43 ms. Spectral data were auto‐
matically sent to a controlling PC via a USB interface. A
Microsoft Visual C++ program using the CDI software li‐
brary was used to save the spectral data. A description of the
construction and operation of an earlier assembly is provided
by Armstrong (2006). One difference between the earlier in‐
strument and the present instrument is that a bifurcated fiber
collects spectra from both ends of the tube rather than the
single fiber previously used at the top end.

Prior to spectra collection, the instrument was allowed to
warm up for at least an hour to stabilize the lights and
spectrometer. A background dark current and reference re‐
flectance spectra from white Spectralon (99% diffuse reflec-

Figure 1. Component assembly used for spectral measurements.

tance) were collected at constant time intervals (1/2 h) during
the spectral data collection. The white reference measure‐
ments were made by inserting a slice of Spectralon at the mid‐
section of the light tube. The glass tube is comprised of two
tube sections with a small gap to allow insertion of the Spec‐
tralon.

BULK REFERENCE NIRS MODELS

In developing prediction models, expected variations in
the samples caused by factors such as genetic variability, sea‐
sonal changes, location, and cultural practices had to be ac‐
counted for. Armstrong (2006) achieved good model
prediction statistics for rapid single‐seed NIRS of moisture
content of corn and soybeans, and protein content for soy‐
beans. The soybean dataset consisted of three varieties hav‐
ing low, medium, and high protein contents. The current
study worked on a wider array of hybrids and varieties, creat‐
ing greater diversity of genetic variation in the prediction
models for both corn and soybeans. The constituent values of
these samples were also selected to represent a broad and rea‐
sonably even range of values. Sample selection did result in
a sample set having a higher number of samples closer to the
sample‐set average and is the result of selecting for multiple
constituents.

Seed spectra were collected from 48 randomly selected
seeds from each sample and seed type. Each seed was
scanned three times, and the mean seed spectrum was com‐
puted after mean centering. The mean sample spectrum was
then computed, from the mean seed spectrum, for five com‐
binations of 10, 20, 30, 40, and 47 seeds. The seed spectra
used in these combinations were randomly selected from the
48 seeds with replacement. The mean sample spectrum was
also computed for all 48 seeds. The five combinations for
each seed number were used to develop better trends of the
effect of seed number on model statistics. Samples were ran‐
domly sequenced when scanning seeds.

Partial least squares regression (PLS1) with cross‐
validation was performed between the mean sample spectra
determined from the seed combinations defined above and
bulk reference values. Bulk prediction models were devel‐
oped separately for the respective seed sets from Iowa and
Kentucky. A combined Iowa‐Kentucky model was also de‐
veloped for soybean protein. Spectral pretreatments were
mean centering (MC) or MC plus standard normal variate
(MC‐SNV). ParLeS software (Viscarra Rossel, 2008) was
used to develop models, and no validation sets were used due
to the low sample number. The number of factors determined
as optimal for each model was based on the minimum root
mean square error (RMSE) value obtained from the PLS1
modeling after examination of RMSE versus the factor lev‐
els.

SINGLE‐SEED NIRS MODEL FOR SOYBEANS

The goal for selecting seeds used for single‐seed predic‐
tion model development was to obtain a broad and equal dis‐
tribution of seed protein content, as suggested by Williams
(2001). The initial step was to select seeds from the 40 Iowa
soybean samples that would be individually analyzed for pro‐
tein content; Kentucky soybeans were not used as they were
needed for future work. The seeds selected should not only
compose a wide span of constituent values but each level
should be equally represented. To achieve this, single‐seed
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protein content was predicted using the bulk NIRS protein
prediction model developed from the Kentucky samples.
Single‐seed protein values predicted by the model yielded no
obvious outliers. A normal distribution plot was then pro‐
duced from predicted protein and used to select 15 seeds at
each binned protein levels of 1%, for a total of 360 seeds. Pre‐
dicted protein content ranged from 29% to 52%. Seeds were
placed in labeled cell‐bind trays for identity preservation.

Spectra from these seeds were obtained by the same meth‐
ods described previously and then sent to the Soil Testing
Laboratory in the Department of Agronomy, Kansas State
University, for protein analysis (FP‐528, Leco Corp., St. Jo‐
seph, Mich.) using AACC Method 46‐30 (AACC, 2000).
Moisture content determination was performed on several
representative  samples prior to protein analysis according to
ASABE Standards (2006) and used for moisture adjustment.
Single‐seed PLS1 modeling was also developed using
ParLeS software (Viscarra Rossel, 2008). Comparisons were
then made with bulk model predictions from single‐seed
spectra and reference values.

RESULTS AND DISCUSSION
BULK MODEL PREDICTIONS

Bulk model prediction statistics are shown in table 2.
Mean spectra were determined using seed counts of 10, 20,
30, 40, and 47 seeds subsampled from the pool of 48 seeds.
Five different models were developed for each of the seed
counts to provide the standard deviation of model statistics
but are not shown. Additional models used all of the 48 seeds
available and included a protein model for combined Iowa
and Kentucky soybeans. Factor levels selected for soybean
protein models were selected from plots of RMSE versus fac‐
tor level, as shown in figure 2. Similar selections were made
for other models. At the selected factor levels, model regres‐
sion coefficients generally corresponded to known constitu‐
ent absorption bands with pronounced coefficient peaks
occurring close to these wavelengths (data not shown).

Results in table 2 show that the mean and standard devi‐
ation of the modeling statistics (R2, SECV, and RPD) gener‐
ally improved with an increase in seed number. Part of the
reason for this was that only 48 seeds were available from the
sampling pool, and models with higher seed numbers will

Table 2. PLS1 prediction statistics for mean spectra regressed with bulk reference values. The number of seeds varied from 10 to 48 for
determining the mean spectra. Five different models were determined for each number of seed levels with mean regression statistics reported.[a]

No. of Seeds R2 SECV RPD F R2 SECV RPD F

Iowa Corn Protein, Mean, n = 40 Iowa Corn Oil, Mean, n = 40

10 0.75 0.86 2.0 6 0.73 0.73 1.9 6
20 0.75 0.86 2.0 6 0.84 0.58 2.6 6
30 0.77 0.83 2.1 6 0.87 0.52 2.7 6
40 0.78 0.82 2.1 6 0.87 0.50 2.9 6
47 0.78 0.81 2.2 6 0.87 0.51 2.8 6
48 0.79 0.78 2.2 6 0.87 0.50 2.8 6

Iowa Corn Starch, Mean, n = 35 Iowa Corn Density, Mean, n = 35

10 0.68 1.26 1.8 5 0.88 0.012 3.0 3
20 0.79 1.13 2.3 5 0.91 0.011 2.9 3
30 0.80 1.01 2.3 5 0.863 0.013 2.7 3
40 0.79 1.01 2.2 5 0.88 0.012 3.0 3
47 0.80 1.00 2.3 5 0.88 0.012 2.9 3
48 0.80 .99 2.3 5 0.88 0.012 3.0 3

Kentucky Soybean Protein, Mean, n = 21 Iowa Soybean Protein, Mean, n = 40

10 0.86 1.99 2.7 4 0.79 1.18 2.2 6
20 0.88 1.76 3.1 4 0.82 1.06 2.4 6
30 0.88 1.77 3.1 4 0.83 1.07 2.4 6
40 0.89 1.76 3.1 4 0.84 1.04 2.5 6
47 0.89 1.68 3.2 4 0.84 1.02 2.6 6
48 0.90 1.66 3.3 4 0.84 1.02 2.6 6

Kentucky Soybean Oil, Mean, n = 21 Iowa Soybean Oil, Mean, n = 40

10 0.83 1.09 2.5 4 0.77 1.91 2.1 6
20 0.84 1.06 2.5 4 0.81 1.28 2.2 6
30 0.84 1.06 2.6 4 0.81 1.24 2.5 6
40 0.87 .922 2.7 4 0.84 1.26 2.5 6
47 0.87 .977 2.8 4 0.84 1.26 2.5 6
48 0.87 .966 2.8 4 0.84 1.26 2.5 6

Iowa Soybean Fiber, Mean, n = 40 Iowa‐Kentucky Combined Protein, n = 61

10 0.44 0.19 1.3 6 NA ‐‐ ‐‐ ‐‐
20 0.54 0.17 1.5 6 NA ‐‐ ‐‐ ‐‐
30 0.54 0.18 1.5 6 NA ‐‐ ‐‐ ‐‐
40 0.57 0.17 1.5 6 NA ‐‐ ‐‐ ‐‐
47 0.54 0.18 1.5 6 NA ‐‐ ‐‐ ‐‐
48 0.54 0.18 1.5 6 .89 1.00 3.93 7

[a] R2 = coefficient determination for the cross‐validation model, SECV = standard error of the cross‐validation model, RPD = ratio of the standard
deviation to the standard error for the cross‐validation model, F = factor level used for PLSR model, and NA = not applicable.
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Figure 2. RMSE versus factor levels for bulk protein models using 48‐seed
mean spectra.

undoubtedly use the same seeds; thus, model statistics at
these levels should not vary as much. Regardless, the model
statistics showed good improvement when going from
10�seeds to 20 seeds, with improvements less pronounced as
additional seeds were included. However, subsamples were
more independent of each other at lower seed counts. Del‐
wiche and Hruschka (2000) showed significant model im‐
provements for wheat protein prediction as the number of
seeds used for mean spectra increased from 1 to 100. This
study differed in that single‐seed protein was used to deter‐
mine the bulk sample protein.

Overall, the predictive ability of bulk reference models
could be described as qualitative for many constituents and
thus adequate for sorting seeds into course segregations.
Models using MC‐SNV were as good, or better, than models
using MC (not shown) alone. Iowa soybean fiber was not pre‐
dicted well, and model statistics did not improve with in‐
creasing seed numbers.

SINGLE‐SEED AND BULK MODEL PROTEIN PREDICTIONS
Predictions of single‐seed protein reference values from

single‐seed spectra are shown in figure 3, and RMSE versus
factor levels are shown in figure 4. The single‐seed model
used MC‐SNV as a spectral pretreatment, and the statistics
shown are for cross‐validation only. Statistics derived from
MC spectra were good but poorer compared to MC‐SNV. The
single‐seed model had good quantitative prediction ability
(SECV = 0.98%, RPD = 5.56) at a factor level of 8.

Iowa, Kentucky, and Iowa‐Kentucky bulk protein models
were used to predict Iowa single‐seed soybean reference pro‐
tein from single‐seed spectra. Most bulk model predictions of
protein from single‐seed spectra were reasonable but not as
good as the single‐seed model predictions. The Iowa and
Iowa‐Kentucky bulk model SEP was 1.82% and was about
twice that of the single‐seed model (0.97%) with little bias
present. Bias was calculated as the mean reference value mi‐
nus the mean predicted value. Statistics were basically identi‐
cal for both of these bulk models at the factor levels used
(figs. 5 and 6). The Kentucky model, however, had poor pre‐
dictions of Iowa soybean protein at the original selected fac‐
tor level of 4 (fig. 7), with significant bias and much greater
SEP (3.94%). When the factor level was increased to 8
(fig.�8), predictions were much better (SEP = 2.65%, RPD =
2.1) but not as good as the Iowa and Iowa‐Kentucky predic‐
tions. While a factor level of 8 could be regarded as an overfit
of the data, the model was predicting an independent Iowa
data set and did so approaching the performance of the self‐
predicting Iowa bulk model.

Iowa single-seed
R2 = 0.97
SECV = 0.98
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Figure 3. Protein prediction for Iowa single soybean seeds using a single‐
seed model.
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Figure 4. RMSE versus number of factors for the single‐seed protein mod‐
el developed from Iowa soybeans.
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Figure 5. Iowa bulk model prediction of single protein from single‐seed
spectra.

Iowa-Kentucky
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Figure 6. Iowa‐Kentucky bulk model prediction of single‐seed protein
from single seed spectra.
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Kentucky
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Figure 7. Kentucky bulk model prediction of Iowa single‐seed protein
from single seed spectra at a factor level of 4.
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Figure 8. Kentucky bulk model prediction of Iowa single seed protein
from single‐seed spectra at a factor level of 8.

Results indicate that bulk models can provide rough segre‐
gation of samples for common constituents such as protein
and oil. The instrumentation used in this work allows seeds
to be scanned quickly and easily so that models can be devel‐
oped from bulk samples and reference values as opposed to
single seeds. This can reduce the time and expense of devel‐
oping single‐seed models and allow development of self‐
prediction models, as was the case for predicting single‐seed
protein using the Iowa bulk model. In cases where seeds need
to be retained and cannot be used for destructive reference
analysis, the prediction of Iowa single‐seed protein from the
Kentucky bulk model indicates that it is possible to get a
rough constituent ranking of seeds using an independent pre‐
diction model. In this case, though, the Kentucky bulk mod‐
els developed were very sensitive to model factor levels and
should be viewed with caution or somehow validated with
external reference samples. Future work should address this
issue, and a possible solution would be development of refer‐
ence standards to check and correct model predictions.

CONCLUSIONS
Development of single‐seed NIRS prediction models us‐

ing bulk sample references and mean single‐seed spectra for
corn and soybeans should provide a means to sort seeds into
different levels of protein and oil and starch (corn). It should
also be possible to sort corn seeds by seed density. Bulk mod‐
el predictions for soybean fiber were poor and are unlikely to
segregate seeds based on fiber. Statistics show that the num‐
ber of seeds used to derive the mean spectra for a sample

should be at least 30. Single‐seed soybean protein values pre‐
dicted by bulk NIRS models and a single‐seed protein model
compared favorably with each other, although bulk model
performance was not considered quantitative when
compared to a single‐seed model. Self‐prediction bulk mod‐
els performed much better in measuring single‐seed protein
than independent bulk models. The instrumentation used in
this work can facilitate quick development of bulk models for
seed sorting, but verification of sorted fractions would seem
advisable.
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